Mass Timber Connections
Presented by Greg Kingsley, PhD, PE

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board.
Acknowledgements

WoodWorks – Wood Products Council (WPC)
- Karen Gesa – Technical Director, Project Resources & Solutions Division
- Scott Breneman – Senior Technical Director – Mass Timber

KL&A Engineers & Builders
- Greg Kingsley
- Chris Kendall
- Erin Kinder
- Brian Malone
- Craig Dixon
- Rachel Chaggaris

Swinerton Mass Timber
- Graham Montgomery
- Brendan Kelly
- Chris Evans

OZ Architecture
- Jacob Levy
- Joe Anastasi
Purpose

To understand the spectrum of available mass timber connections and aid in the selection of cost-optimal connections.
The Players

- Owner
- Architect
- General Contractor
- Mass Timber Supplier
- Structural Engineer
The Players

• Owner
• Architect
• General Contractor
• Mass Timber Supplier
• Structural Engineer
Mass Timber Connections Index

Go to WoodWorks.org and click on “Design & Tools”

106 structural connections

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Image</th>
<th>Designer Notes</th>
<th>Class</th>
<th>Load</th>
<th>Cost</th>
<th>Const</th>
<th>Inspect</th>
<th>Fire</th>
</tr>
</thead>
</table>
| Panels Connect with Single Surface Spline | ![Image](image_url) | **Purpose:** Transfer of in-plane shear along the panel to panel joint.
Description: Adjacent floor panels with routed surfaces are butted together. A plywood spline is fastened to both panels using partially threaded screws or nails.
Notes:
- Capacity of connection is controlled by shear capacity of dowel-type fasteners.
- Double Surface Spline or Steel Surface Spline can be used for increased capacity.
- Spline may be fully above panels without routed surface where floor or roof coverings allow.
- Where using nails, consider specifying nail gun nails instead of common wire nails for constructability.
- Where screws are used instead of nails, Cost increases and Constructability is moderate.
- Typical minimum plywood thickness is ½” nominal.
- Coordinate spline and rout width and thickness with panel supplier. | 1 | low | $ | easy | easy | rated |
Table 2: Mass Timber Panel Support at Mass Timber Beam

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Image</th>
<th>Designer Notes</th>
<th>Class</th>
<th>Load</th>
<th>Cost</th>
<th>Const</th>
<th>Inspect</th>
<th>Fire</th>
</tr>
</thead>
</table>
| **2-1. Panel Bears on Beam** | ![Diagram](image) | **Purpose**: Transfer of vertical loads from roof or floor panel to wood beam. Can also transfer shear along the length of the beam.
Description: Roof or floor panel beam on top of wood beam. Positive attachment is made with partially-threaded screws.
Notes:
• Capacity of primary load path is controlled by perpendicular-to-grain bearing capacity of floor panel or beam.
• Screws provide load path for in-plane loads. | 1 | High | $ | Easy | Easy | Level II |

| **2-2. Panel Bears on Beam at Notch** | ![Diagram](image) | **Purpose**: Transfer of vertical load from roof or floor panel to wood beam. Can also transfer shear along the length of the beam.
Description: Roof or floor panel beam on notch in wood beam and is connected with partially-threaded screws.
Notes:
• Capacity of primary load path is controlled by perpendicular-to-grain bearing capacity of floor panel or notch.
• Reasonable minimum notch bearing width is 1”.
• Shop machined notch provides more reliable elevation control than applied bracket or ledger.
• In panel design, consider that panel is not continuous across connection and multi-span conditions may not be achievable.
• Beam must be designed for reduced net section. | 1 | Medium | $$ | Easy | Easy | Level I |
Design Considerations
Design Considerations

• Structural Basics
• Aesthetics
• Construction Tolerance
• Constructability
• Moisture
• Fire Rating
• Inspections
Structural Basics

- IBC
- ASCE-SEI 7
- AWC NDS
- AISC
- APA T300
- CLT Handbook
Wood Design Reminders

- Bearing is Better than Dowel-Type Fasteners
- Parallel is Better than Perpendicular to Grain
- No Screw Withdrawal from End Grain
- Edge Distances and Spacing are Important
- Notch with Care
Wood Design Reminders

- Bearing is Better than Dowel-Type Fasteners
- Parallel is Better than Perpendicular to Grain
- No Screw Withdrawal from End Grain
- Edge Distances and Spacing are Important
- Notch with Care
Wood Design Reminders

- Bearing is Better than Dowel-Type Fasteners

- Parallel is Better than Perpendicular to Grain

- No Screw Withdrawal from End Grain

- Edge Distances and Spacing are Important

- Notch with Care
Wood Design Reminders

- Bearing is Better than Dowel-Type Fasteners
- Parallel is Better than Perpendicular to Grain
- No Screw Withdrawal from End Grain
- Edge Distances and Spacing are Important
- Notch with Care

2018 AWC NDS, Section 12.2.2.3
Wood Design Reminders

- Bearing is Better than Dowel-Type Fasteners
- Parallel is Better than Perpendicular to Grain
- No Screw Withdrawal from End Grain
- Edge Distances and Spacing are Important
- Notch with Care

- 2018 AWC NDS, Section 12.5
- Manufacturer’s Literature
Wood Design Reminders

- Bearing is Better than Dowel-Type Fasteners
- Parallel is Better than Perpendicular to Grain
- No Screw Withdrawal from End Grain
- Edge Distances and Spacing are Important

- 2018 AWC NDS, Section 5.4.5
- APA – The Engineered Wood Association (EWS) T300 Glulam Connection Details Construction Guide
- MTC Solutions ASSY Screws as Tensile Reinforcement in Notched Beams

(APA T300)
Aesthetics
Aesthetics
<table>
<thead>
<tr>
<th>Solution</th>
<th>Gap between Mass Timber Beam and Concrete Wall</th>
<th>Grouting below Sill Plate at Mass Timber Panel to Concrete Wall</th>
<th>Adjustable Column Base at Mass Timber Column to Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Example</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beam Perpendicular to Wall Connected to Face of Wall

Panel Bears at Top of Wall

Column Bears on Concrete with Adjustable Standoff Base
Moisture

SCREW HEAD ALIGNS WITH FACE OF MEMBER

COUNTERSINK SCREW
Moisture

Drying shrinkage through depth of 7-ply CLT floor:
Fire Rating

TABLE 601

<table>
<thead>
<tr>
<th>BUILDING ELEMENT</th>
<th>TYPE I</th>
<th>TYPE II</th>
<th>TYPE III</th>
<th>TYPE IV</th>
<th>TYPE V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Primary structural frame (see Section 202)</td>
<td>3 1/2</td>
<td>2 1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>3 1/2</td>
</tr>
<tr>
<td>Bearing walls, Exterior</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nonbearing walls and partitions Exterior</td>
<td>3 1/2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nonbearing walls and partitions Interior</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Floor construction and associated secondary members (see Section 202)</td>
<td>2</td>
<td>2</td>
<td>1 1/2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Roof construction and associated secondary members (see Section 202)</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td></td>
</tr>
</tbody>
</table>

See Table 602

Inventory of Fire Resistance-Tested Mass Timber Assemblies & Penetrations

Following is a list of mass timber assemblies and penetration fire stopping systems in mass timber assemblies that have been tested for fire-resistance. Sources are noted at the end of this document. For free technical assistance on any questions related to the fire-resistance design of mass timber assemblies, or free technical assistance related to any aspect of the design, engineering, or construction of a commercial or multi-family wood building in the U.S., email help@woodworks.org, or contact the WoodWorks Regional Director nearest you.

Contents:
- Table 1: North American Fire Resistance Tests of Mass Timber Floor / Roof Assemblies
- Table 2: North American Fire Resistance Tests of CLT Wall Assemblies
- Table 3: North American Fire Tests of Penetrations and Fire Stops in CLT Assemblies
- Table 4: North American Fire Resistance Tests of Connections

Sources

Disclaimer

Inspections
Connection Index
Connection categories go from top to bottom of structure:

- Panel to Panel
- Panel Support
- Beam Support
- Supporting Other Framing Systems
- Wall Panel to Wall Panel
- Base Connections
Panel to Panel Connections

• Diaphragm loads

• Many fasteners required
 • Consider fastener type

• Multiple fire-rated options

Panel to Panel Connections
Panel to Panel Connections
Panel Support

Panels supported on …

• Beam
• Column
• Wall Panel
• Concrete or Masonry
• Light Frame
• Steel Beam
Panel Support at Mass Timber Beam

- Overall floor depth
- Panel continuity
- Fire rating
- Aesthetics
Panel Support at Walls

Panels Supported by Walls:

Gravity Support
- Mass Timber Wall
- Concrete
- Masonry
- Light Frame
Panel Support at Steel Beam

Hybrid Structural System

• Reasons
 • Structural Depth
 • MEP coordination
 • Aesthetics
• Fire protection
- Mass Timber Girder
- Mass Timber Column
- Mass Timber Wall Panel
- Concrete or Masonry
- Light Frame
- Steel Frame
Beam Support at Girder

• Largest Section

• Many connections applicable to other Beam Support Conditions
 • Column
 • Wall Panel
Beam Support at Girder
Beam Support at Column

- Many options
- Aesthetics
- Loads
- Ceiling height
Base Connections:
• Column at Concrete
• Wall Panel at Concrete
Connection Information
<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Image</th>
<th>Designer Notes</th>
<th>Class</th>
<th>Load</th>
<th>Cost</th>
<th>Const</th>
<th>Inspect</th>
<th>Fire</th>
</tr>
</thead>
</table>
| Panels Connect with Single Surface Spline | ![Image](image.jpg) | Purpose: Transfer of in-plane shear along the panel to panel joint. Description: Adjacent floor panels with routed surfaces are butted together. A plywood spline is fastened to both panels using partially threaded screws or nails. Notes:
 - Capacity of connection is controlled by shear capacity of dowel-type fasteners.
 - Double Surface Spline or Steel Surface Spline can be used for increased capacity.
 - Spline may be fully above panels without routed surface where floor or roof coverings allow.
 - Where using nails, consider specifying nail gun nails instead of common wire nails for constructability, or collated screws instead of individual screws.
 - Where screws are used instead of nails, Cost increases and Constructability is moderate.
 - Typical minimum plywood thickness is $\frac{3}{8}$" nominal.
 - Coordinate spline and rout width and thickness with panel supplier. | 1 | medium | $ | easy | easy | Level I |
<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Image</th>
<th>Designer Notes</th>
</tr>
</thead>
</table>
| Panels Connect with Single Surface Spline | ![Image](image.png) | Purpose: Transfer of in-plane shear along the panel to panel joint. Description: Adjacent floor panels with routed surfaces are butted together. A plywood spline is fastened to both panels using partially threaded screws or nails. Notes:
- Capacity of connection is controlled by shear capacity of dowel-type fasteners.
- Double Surface Spline or Steel Surface Spline can be used for increased capacity.
- Spline may be fully above panels without routed surface where floor or roof coverings allow.
- Where using nails, consider specifying nail gun nails instead of common wire nails for constructability, or collated screws instead of individual screws.
- Where screws are used instead of nails, Cost increases and Constructability is moderate.
- Typical minimum plywood thickness is $\frac{3}{8}''$ nominal.
- Coordinate spline and rout width and thickness with panel supplier. | | Class | Load | Cost | Const | Inspect | Fire |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>medium</td>
</tr>
</tbody>
</table>
Connection Information

Panels Connect with Single Surface Spline

Designer Notes
- **Purpose:** Transfer of in-plane shear along the panel to panel joint.
- **Description:** Adjacent floor panels with routed surfaces are butted together. A plywood spline is fastened to both panels using partially threaded screws or nails.
- **Notes:**
 - Capacity of connection is controlled by shear capacity of dowel-type fasteners.
 - Double Surface Spline or Steel Surface Spline can be used for increased capacity.
 - Spline may be fully above panels without routed surface where floor or roof coverings allow.
 - Where using nails, consider specifying nail gun nails instead of common wire nails for constructability, or collated screws instead of individual screws.
 - Where screws are used instead of nails, Cost increases and Constructability is moderate.
 - Typical minimum plywood thickness is ¾" nominal.
 - Coordinate spline and rout width and thickness with panel supplier.

<table>
<thead>
<tr>
<th>Class</th>
<th>Load</th>
<th>Cost</th>
<th>Const</th>
<th>Inspect</th>
<th>Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>medium</td>
<td>$</td>
<td>easy</td>
<td>easy</td>
<td>Level I</td>
</tr>
</tbody>
</table>

- **Load path:**
 - **Primary loads**
 - **Secondary loads**
<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Image</th>
<th>Designer Notes</th>
<th>Class</th>
<th>Load</th>
<th>Cost</th>
<th>Const</th>
<th>Inspect</th>
<th>Fire</th>
</tr>
</thead>
</table>
| Panels Connect with Single Surface Spline | ![Image](image-url) | Purpose: Transfer of in-plane shear along the panel to panel joint.
Description: Adjacent floor panels with routed surfaces are butted together. A plywood spline is fastened to both panels using partially threaded screws or nails.
Notes:
- Capacity of connection is controlled by shear capacity of dowel-type fasteners.
- Double Surface Spline or Steel Surface Spline can be used for increased capacity.
- Spline may be fully above panels without routed surface where floor or roof coverings allow.
- Where using nails, consider specifying nail gun nails instead of common wire nails for constructability, or collated screws instead of individual screws.
- Where screws are used instead of nails, Cost increases and Constructability is moderate.
- Typical minimum plywood thickness is ¼" nominal.
- Coordinate spline and rout width and thickness with panel supplier. | 1 | medium | $ | easy | easy | Level I |
<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Image</th>
<th>Designer Notes</th>
<th>Class</th>
<th>Load</th>
<th>Cost</th>
<th>Const</th>
<th>Inspect</th>
<th>Fire</th>
</tr>
</thead>
</table>
| Panels Connect with Single Surface Spline | ![Image](image_url) | Purpose: Transfer of in-plane shear along the panel to panel joint. Description: Adjacent floor panels with routed surfaces are butted together. A plywood spline is fastened to both panels using partially threaded screws or nails. Notes:
 - Capacity of connection is controlled by shear capacity of dowel-type fasteners.
 - Double Surface Spline or Steel Surface Spline can be used for increased capacity.
 - Spline may be fully above panels without routed surface where floor or roof coverings allow.
 - Where using nails, consider specifying nail gun nails instead of common wire nails for constructability, or collated screws instead of individual screws.
 - Where screws are used instead of nails, Cost increases and Constructability is moderate.
 - Typical minimum plywood thickness is 3/4" nominal.
 - Coordinate spline and rout width and thickness with panel supplier. | 1 | medium | $ | easy | easy | Level I |
Connection Information

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Image</th>
<th>Designer Notes</th>
<th>Class</th>
<th>Load</th>
<th>Cost</th>
<th>Const</th>
<th>Inspect</th>
<th>Fire</th>
</tr>
</thead>
</table>
| Panels Connect with Single Surface Spline | ![Image](image.png) | **Purpose:** Transfer of in-plane shear along the panel to panel joint.
Description: Adjacent floor panels with routed surfaces are butted together. A plywood spline is fastened to both panels using partially threaded screws or nails.
Notes:
- Capacity of connection is controlled by shear capacity of dowel-type fasteners.
- Double Surface Spline or Steel Surface Spline can be used for increased capacity.
- Spline may be fully above panels without routed surface where floor or roof coverings allow.
- Where using nails, consider specifying nail gun nails instead of common wire nails for constructability, or collated screws instead of individual screws.
- Where screws are used instead of nails, Cost increases and Constructability is moderate.
- Typical minimum plywood thickness is ¾” nominal.
- Coordinate spline and rout width and thickness with panel supplier. | 1 | medium | $ | easy | easy | Level I |
<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Image</th>
<th>Designer Notes</th>
</tr>
</thead>
</table>
| Panels Connect with Single Surface Spline | | **Purpose:** Transfer of in-plane shear along the panel to panel joint.
Description: Adjacent floor panels with routed surfaces are butted together. A plywood spline is fastened to both panels using partially threaded screws or nails.
Notes:
- Capacity of connection is controlled by shear capacity of dowel-type fasteners.
- Double Surface Spline or Steel Surface Spline can be used for increased capacity.
- Spline may be fully above panels without routed surface where floor or roof coverings allow.
- Where using nails, consider specifying nail gun nails instead of common wire nails for constructability, or collated screws instead of individual screws.
- Where screws are used instead of nails, Cost increases and Constructability is moderate.
- Typical minimum plywood thickness is ¾” nominal.
- Coordinate spline and rout width and thickness with panel supplier. |
Connection Class

<table>
<thead>
<tr>
<th>Connection Class</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Description</td>
<td>Requires only mass timber elements and fasteners</td>
<td>Utilizes steel fabricated elements, with components such as angles and plates, and includes fasteners</td>
<td>Prefabricated proprietary connectors</td>
</tr>
<tr>
<td>Connection Example</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Connection Class

<table>
<thead>
<tr>
<th>Connection Class</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Description</td>
<td>Requires only mass timber elements and fasteners</td>
<td>Utilizes steel fabricated elements, with components such as angles and plates, and includes fasteners</td>
<td>Prefabricated proprietary connectors</td>
</tr>
<tr>
<td>Connection Example</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection Class</td>
<td>Class 1</td>
<td>Class 2</td>
<td>Class 3</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Class Description</td>
<td>Requires only mass timber elements and fasteners</td>
<td>Utilizes steel fabricated elements, with components such as angles and plates, and includes fasteners</td>
<td>Prefabricated proprietary connectors</td>
</tr>
<tr>
<td>Connection Example</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Connection Class

<table>
<thead>
<tr>
<th>Connection Class</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Description</td>
<td>Requires only mass timber elements and fasteners</td>
<td>Utilizes steel fabricated elements, with components such as angles and plates, and includes fasteners</td>
<td>Prefabricated proprietary connectors</td>
</tr>
<tr>
<td>Connection Example</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection Type</td>
<td>Image</td>
<td>Designer Notes</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>----------------</td>
<td></td>
</tr>
</tbody>
</table>
| Panels Connect with Single Surface Spline | ![Image](image.png) | Purpose: Transfer of in-plane shear along the panel to panel joint.
Description: Adjacent floor panels with routed surfaces are butted together. A plywood spline is fastened to both panels using partially threaded screws or nails.
Notes:
- Capacity of connection is controlled by shear capacity of dowel-type fasteners.
- Double Surface Spline or Steel Surface Spline can be used for increased capacity.
- Spline may be fully above panels without routed surface where floor or roof coverings allow.
- Where using nails, consider specifying nail gun nails instead of common wire nails for constructability, or collated screws instead of individual screws.
- Where screws are used instead of nails, Cost increases and Constructability is moderate.
- Typical minimum plywood thickness is \(\frac{3}{8} \)" nominal.
- Coordinate spline and rout width and thickness with panel supplier. |

<table>
<thead>
<tr>
<th>Class</th>
<th>Load</th>
<th>Cost</th>
<th>Const</th>
<th>Inspect</th>
<th>Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>medium</td>
<td>$</td>
<td>easy</td>
<td>easy</td>
<td>Level I</td>
</tr>
</tbody>
</table>
Connection Information

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Image</th>
<th>Designer Notes</th>
<th>Class</th>
<th>Load</th>
<th>Cost</th>
<th>Const</th>
<th>Inspect</th>
<th>Fire</th>
</tr>
</thead>
</table>
| Panels Connect with Single Surface Spline | ![Image](image) | **Purpose:** Transfer of in-plane shear along the panel to panel joint.
Description: Adjacent floor panels with routed surfaces are butted together. A plywood spline is fastened to both panels using partially threaded screws or nails.
Notes:
- Capacity of connection is controlled by shear capacity of dowel-type fasteners.
- Double Surface Spline or Steel Surface Spline can be used for increased capacity.
- Spline may be fully above panels without routed surface where floor or roof coverings allow.
- Where using nails, consider specifying nail gun nails instead of common wire nails for constructability, or collated screws instead of individual screws.
- Where screws are used instead of nails, Cost increases and Constructability is moderate.
- Typical minimum plywood thickness is 3/8" nominal.
- Coordinate spline and rout width and thickness with panel supplier. | 1 | medium | $ | easy | easy | Level I |
Connection Information

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Image</th>
<th>Designer Notes</th>
</tr>
</thead>
</table>
| Panels Connect with Single Surface Spline | ![Image](image.png) | Purpose: Transfer of in-plane shear along the panel to panel joint. Description: Adjacent floor panels with routed surfaces are butted together. A plywood spline is fastened to both panels using partially threaded screws or nails. Notes:
 - Capacity of connection is controlled by shear capacity of dowel-type fasteners.
 - Double Surface Spline or Steel Surface Spline can be used for increased capacity.
 - Spline may be fully above panels without routed surface where floor or roof coverings allow.
 - Where using nails, consider specifying nail gun nails instead of common wire nails for construcability, or collated screws instead of individual screws.
 - Where screws are used instead of nails, Cost increases and Constructability is moderate.
 - Typical minimum plywood thickness is ¼” nominal.
 - Coordinate spline and rout width and thickness with panel supplier. | Class | Load | Cost | Inspct | Fire |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Connection Type</td>
<td>Image</td>
<td>Designer Notes</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Panels Connect with Single Surface Spline | ![Image](image) | **Purpose:** Transfer of in-plane shear along the panel to panel joint.
Description: Adjacent floor panels with routed surfaces are butted together. A plywood spline is fastened to both panels using partially threaded screws or nails.
Notes:
- Capacity of connection is controlled by shear capacity of dowel-type fasteners.
- Double Surface Spline or Steel Surface Spline can be used for increased capacity.
- Spline may be fully above panels without routed surface where floor or roof coverings allow.
- Where using nails, consider specifying nail gun nails instead of common wire nails for constructability, or collated screws instead of individual screws.
- Where screws are used instead of nails, Cost increases and Constructability is moderate.
- Typical minimum plywood thickness is 3/8” nominal.
- Coordinate spline and rout width and thickness with panel supplier. | 1 | medium | $ | easy | easy | Level I |
<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Image</th>
<th>Designer Notes</th>
<th>Class</th>
<th>Load</th>
<th>Cost</th>
<th>Const</th>
<th>Inspect</th>
<th>Fire</th>
</tr>
</thead>
</table>
| Panels Connect with Single Surface Spline | ![Image](image.png) | **Purpose:** Transfer of in-plane shear along the panel to panel joint.
Description: Adjacent floor panels with routed surfaces are butted together. A plywood spline is fastened to both panels using partially threaded screws or nails.
Notes:
- Capacity of connection is controlled by shear capacity of dowel-type fasteners.
- Double Surface Spline or Steel Surface Spline can be used for increased capacity.
- Spline may be fully above panels without routed surface where floor or roof coverings allow.
- Where using nails, consider specifying nail gun nails instead of common wire nails for constructability, or collated screws instead of individual screws.
- Where screws are used instead of nails, Cost increases and Constructability is moderate.
- Typical minimum plywood thickness is $\frac{3}{8}$" nominal.
- Coordinate spline and rout width and thickness with panel supplier. | 1 | medium | $ | easy | easy | Level 1 |
Putting it all Together
Table 2: Mass Timber Panel Support at Mass Timber Beam

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Image</th>
<th>Designer Notes</th>
<th>Class</th>
<th>Load</th>
<th>Cost</th>
<th>Const</th>
<th>Inspect</th>
<th>Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1. Panel Bears on Beam</td>
<td></td>
<td>Purpose: Transfer of vertical loads from roof or floor panel to wood beam. Can also transfer shear along the length of the beam. Description: Roof or floor panel bears on top of wood beam. Positive attachment is made with partially-threaded screws. Notes: - Capacity of primary load path is controlled by perpendicular-to-grain bearing capacity of floor panel or beam. - Screws provide load path for in-plane loads.</td>
<td>1</td>
<td>High</td>
<td>$</td>
<td>Easy</td>
<td>Easy</td>
<td>Level II</td>
</tr>
<tr>
<td>2-2. Panel Bears on Beam at Notch</td>
<td></td>
<td>Purpose: Transfer of vertical load from roof or floor panel to wood beam. Can also transfer shear along the length of the beam. Description: Roof or floor panel bears on notch in wood beam and is connected with partially-threaded screws. Notes: - Capacity of primary load path is controlled by perpendicular-to-grain bearing capacity of floor panel or notch. - Reasonable minimum notch bearing width is 1”. - Shop machined notch provides more reliable elevation control than applied bracket or ledger. - In panel design, consider that panel is not continuous across connection and multi-span conditions may not be achievable. - Beam must be designed for reduced net section.</td>
<td>1</td>
<td>Medium</td>
<td>$5</td>
<td>Easy</td>
<td>Easy</td>
<td>Level I</td>
</tr>
</tbody>
</table>